
Optimal Selection of Impella Patients in Cardiogenic Shock

Selection of the right patient: What can we learn from the main registries?

Prof. Dr. Tom Adriaenssens Dept. of Cardiovascular Medicine University Hospitals Leuven, Belgium 10-05-2021

THE R. O. P. CO. STR.

Werdan et al. Eur Heart J. 2014.

Lesson 1

Important additional efforts are needed to achieve better results in the treatment of cardiogenic shock (CGS)

Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc.

WORKS IN PROGRESS

A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device Versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction

Melchior Seyfarth, MD,*† Dirk Sibbing, MD,* Iris Bauer, MS,* Georg Fröhlich, MD,† Lorenz Bott-Flügel, MD,† Robert Byrne, MB, MRCPI,* Josef Dirschinger, MD,† Adnan Kastrati, MD,* Albert Schömig, MD*†

Munich, Germany

Vol. 52, No. 19, 2008 ISSN 0735-1097/08/\$34.00 doi:10.1016/j.jacc.2008.05.065

Seyfarth et al. J Am Coll Cardiol 2008; 52: 1584-8.

Table 2 Hemodynamic	c Values Before and After	Device Implantation			
	Impella Before (n = 13)	(n = 13)	Impella After $(n = 13)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	p Value
Cl (l/min/m ²)	1.71 ± 0.45	1 .73 ± 0.59	2.20 ± 0.64	$\textbf{1.84} \pm \textbf{0.71}$	0.18
CO (I/min)	3.16 ± 0.77	3.46 ± 1.46	4.12 ± 1.21	$\textbf{3.67} \pm \textbf{1.76}$	0.48
Mean AP (mm Hg)	78 ± 16	72 ± 17	87 ± 18	71 ± 22	0.062
Systolic AP (mm Hg)	106 ± 22	101 ± 23	11 0 ± 24	97 ± 29	0.20
Diastolic AP (mm Hg)	64 ± 15	58 ± 14	74 ± 17	50 ± 16	0.001
Heart rate (beats/min)	95 ± 24	97 ± 24	103 ± 21	99 ± 22	0.68
PCWP (mm Hg)	22 ± 8	22 ± 7	19 ± 5	20 ± 6	0.67
RAP (mm Hg)	13 ± 7	12 ± 6	13 ± 3	12 ± 5	0.82
Mean PAP (mm Hg)	28 ± 8	28 ± 9	28 ± 8	30 ± 11	0.73
SVR (dyn·s·cm ⁻⁵)	$1,617 \pm 385$	1,546 ± 763	1,457 ± 467	1,333 ± 784	0.63

Values are mean \pm SD; p values are for independent comparisons of values for impella after and IABP after implantation.

via Values Defeus and After Device Implementation

AP = arterial pressure; CI = cardiac index; CO = cardiac output; IABP = intra-aortic balloon pump; PAP = pulmonary arterial pressure; PCWP = pulmonary capillary wedge pressure; RAP = right atrial pressure; SVR = systemic vascular resistance.

Seyfarth et al. J Am Coll Cardiol 2008; 52: 1584-8.

Table 2 Hemodynamic Values Before and After Device Implantation

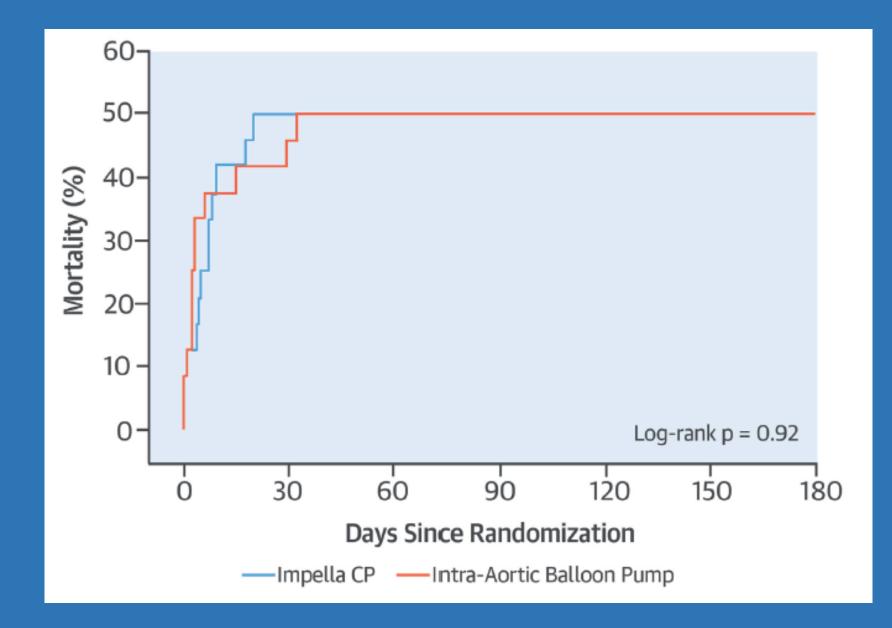
	Impel la B ofore (n = 13)	IABP Before ($n = 13$)	Impella After $(n = 13)$	IABP After $(n = 13)$	p Value
CI (I/min/m ²)	1.71 ± 0.45	1.73 ± 0.59	2.20 ± 0.64	$\textbf{1.84} \pm \textbf{0.71}$	0.18
CO (I/min)	3.16 ± 0.77	3.46 ± 1.46	4.12 ± 1.21	3.67 ± 1.76	0.48
Mean AP (mm Hg)	78 ± 16	72 ± 17	87 ± 18	71 ± 22	0.062
Systolic AP (mm Hg)	106 ± 22	101 ± 23	110 ± 24	97 ± 29	0.20
Diastolic AP (mm Hg)	64 ± 15	58 ± 14	74 ± 17	50 ± 16	0.001
Heart rate (beats/min)	95 ± 24	97 ± 24	103 ± 21	99 ± 22	0.68
PCWP (mm Hg)	22 ± 8	22 ± 7	19 ± 5	20 ± 6	0.67
RAP (mm Hg)	13 ± 7	12 ± 6	13 ± 3	12 ± 5	0.82
Mean PAP (mm Hg)	28 ± 8	28 ± 9	28 ± 8	30 ± 11	0.73
SVR (dyn·s·cm ⁻⁵)	1,617 \pm 385	1 ,546 ± 763	1,457 ± 467	1,333 \pm 784	0.63

Values are mean \pm SD; p values are for independent comparisons of values for impella after and IABP after implantation.

AP = arterial pressure; CI = cardiac index; CO = cardiac output; IABP = intra-aortic balloon pump; PAP = pulmonary arterial pressure; PCWP = pulmonary capillary wedge pressure; RAP = right atrial pressure; SVR = systemic vascular resistance.

Seyfarth et al. J Am Coll Cardiol 2008; 52: 1584-8.

Lesson 2 (ISAR-SHOCK)


Use of Impella 2.5: feasible and safe, improved hemodynamics (个 CI)

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 3, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.10.022

Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction

Dagmar M. Ouweneel, MSc,^a Erlend Eriksen, MD,^b Krischan D. Sjauw, MD, PHD,^a Ivo M. van Dongen, MD,^a Alexander Hirsch, MD, PHD,^a Erik J.S. Packer, MD,^b M. Marije Vis, MD, PHD,^a Joanna J. Wykrzykowska, MD, PHD,^a Karel T. Koch, MD, PHD,^a Jan Baan, MD, PHD,^a Robbert J. de Winter, MD, PHD,^a Jan J. Piek, MD, PHD,^a Wim K. Lagrand, MD, PHD,^c Bas A.J.M. de Mol, MD, PHD,^a Jan G.P. Tijssen, PHD,^a José P.S. Henriques, MD, PHD^a

TABLE 3 Clinical Course During Admission		
	pMCS (n = 24)	IABP (n = 24)
Hemodynamic variables before randomization		
Heart rate, beats/min	81 ± 21	83 ± 28
Mean arterial pressure, mm Hg	$66~\pm15$	66 ± 15
Systolic blood pressure, mm Hg	81 ± 17	84 ± 19
Diastolic blood pressure, mm Hg	58 ± 22	$\textbf{57} \pm \textbf{13}$
Medical therapy before randomization		
Catecholamines or instropes	24/24 (100)	22/24 (92)
Mechanical ventilation	24/24 (100)	24/24 (100)
Cardiac arrest before randomization	24/24 (100)	20/24 (83)
Witnessed arrest	22/24 (92)	17/20 (85)
First rhythm VT/VF	22/24 (92)	17/20 (85)
Time till return of spontaneous circulation, min	21 (15-46)	27 (15-52)
Traumatic injuries at admission	5/24 (21)	2/24 (8)
Blood values on admission*		
Lactate, mmol/l	$\textbf{7.5} \pm \textbf{3.2}$	$\textbf{8.9} \pm \textbf{6.6}$
Hemoglobin, mmol/l	$\textbf{8.6} \pm \textbf{1.2}$	$\textbf{8.6} \pm \textbf{1.2}$
Creatinine, mg/dl	96 ± 29	102 ± 22
Glucose, mmol/l	$\textbf{16.2} \pm \textbf{4.7}$	14.1 ± 5.3
Arterial pH	$\textbf{7.14} \pm \textbf{0.14}$	$\textbf{7.17} \pm \textbf{0.17}$
Baseline echocardiography†		
Estimated left ventricular ejection fraction		
<20%	5/22 (23)	8/18 (44)
20%-40%	10/22 (46)	6/18 (33)
>40%	7/22 (32)	4/18 (22)

TABLE 4 Clinical and Functional Outcomes

	pMCS (n = 24)	IABP (n = 24)	p Value	Hazard Ratio With pMCS (95% CI)
Mortality*				
30-day all-cause mortality	11 (46)	12 (50)	0.92	0.96 (0.42-2.18)
6-month all-cause mortality	12 (50)	12 (50)	0.92	1.04 (0.47-2.32)
Clinical outcomes at 6 months				
Cause of death				
Refractory cardiogenic shock	4 (17)	3 (13)		
Post-anoxic neurological death	5 (21)	6 (25))	
Other reason	3 (13)	2 (13)		
Stroke	1 (4)	1 (4)		
Hemorrhagic stroke	0 (0)	0 (0)		
Ischemic stroke	1 (4)	1 (4)		
Major vascular complication	1 (4)	0 (0)		
Major bleeding	8 (33)	2 (8)		
Device-related bleeding	3 (13)	1 (4)		
Retroperitoneal	1 (4)	0 (0)		
IABP/Impella puncture site	2 (8)	1 (4)		
Nondevice-related bleeding	5 (21)	1 (4)		
Gastro-intestinal bleeding	0 (0)	1 (4)		
Bleeding at other puncture site	1 (4)	0 (0)		
Other location	4 (17)	0 (0)		
Hemolysis requiring extraction of the device	2 (8)	0 (0)		

TABLE 4 Clinical and Functional Outcomes

	pMCS (n = 24)	IABP (n = 24)	p Value	Hazard Ratio With pMCS (95% CI)
Mortality*				
30-day all-cause mortality	11 (46)	12 (50)	0.92	0.96 (0.42-2.18)
6-month all-cause mortality	12 (50)	12 (50)	0.92	1.04 (0.47-2.32)
Clinical outcomes at 6 months				
Cause of death				
Refractory cardiogenic shock	4 (17)	3 (13)		
Post-anoxic neurological death	5 (21)	6 (25)		
Other reason	3 (13)	3 (13)		
Stroke	1 (4)	1 (4)		
Hemorrhagic stroke	0 (0)	0 (0)		
Ischemic stroke	1 (4)	1 (4)		
Major vascular complication	1(4)	0 (0)		
Major bleeding	8 (33)	2 (8)		
Device-related bleeding	3 (13)	1 (4)		
Retroperitoneal	1 (4)	0 (0)		
IABP/Impella puncture site	2 (8)	1 (4)		
Nondevice-related bleeding	5 (21)	1 (4)		
Gastro intestinal bleeding	0 (0)	1 (4)		
Bleeding at other puncture site	1 (4)	0 (0)		
Other location	4 (17)	0 (0)		
Hemolysis requiring extraction of the device	2 (8)	0 (0)		

Lessons 3 & 4 (IMPRESS)

Outcome of the use of mechanical circulatory support (MCS) in CGS patients who have suffered cardiac arrest is questionable (bad neurologic outcome)

Considerable room for improvement with respect to patient management (bleeding, hemolysis,...)

ORIGINAL RESEARCH ARTICLE

The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support

Amin et al. Circulation 2020; 141: 273-84.

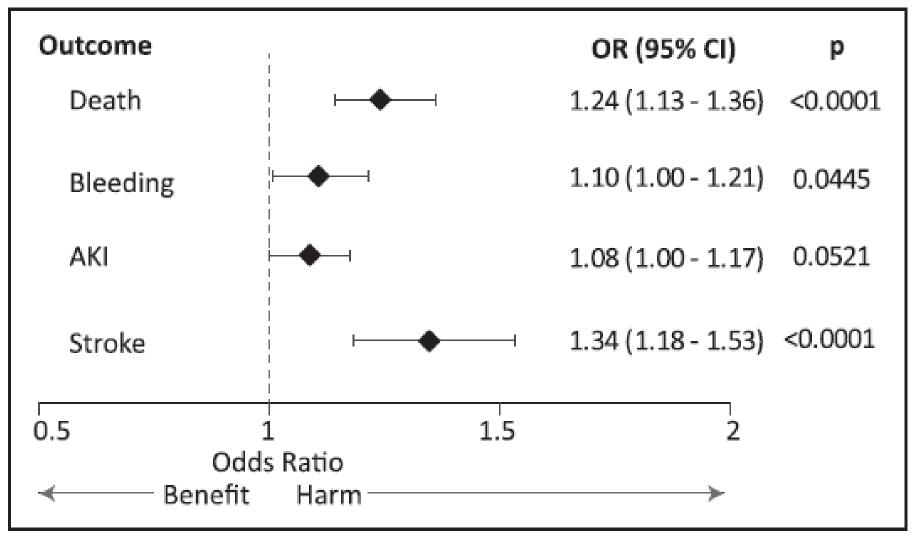


Figure 3. Association of Impella versus IABP use with clinical outcomes.

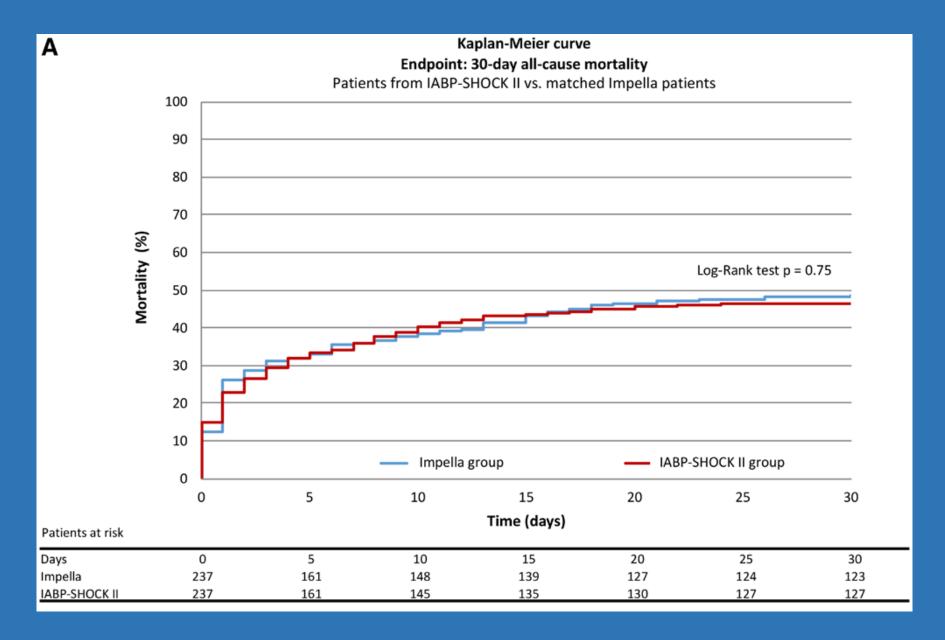
Amin et al. Circulation 2020; 141: 273-84.

	Impella ((n=4782)	Intra-Aortic Balloon Pump (n=43 524)		Total (n=48306)				
Characteristic	n	%	n	%	n	%			
Percutaneous coronary intervention and lesion char	acteristics								
Multivessel disease	2554	53.41	10044	23.08	12 5 98	26.08			
Transradial access	529	11.06	3358	7.72	3887	8.05			
Bifurcation lesion	382	7.99	1230	2.83	1612	3.34			
Bare metal stents used	764	15.98	14 577	33.49	15341	31.76			
Chronic total occlusion	1056	22.08	6277	14.42	7333	15.18			
Laser atherectomy	666	13.93	1498	3.44	2164	4.48			
Rotational/orbital atherectomy	340	7.11	585	1.34	925	1.91			
Mechanical ventilation	1407	29.42	16813	38.63	18220	37.72			
Cardiac arrest	701	14.66	8105	18.62	8806	18.23			
Cardiogenic shock	1792	37.47	2 558	51.83	24350	50.41			
ST-segment–elevation myocardial infarction	1267	26 5	28509	65.5	29776	61.64			
Non–ST-segment–elevation myocardial infarction/unstable angina	2114	44.21	10246	23.54	12 360	25.59			
Indication other than acute coronary syndrome	1401	29.3	4769	10.96	6170	12.77			

Amin et al. Circulation 2020; 141: 273-84.

Lesson 5 Suboptimal results, but ...

- Undifferentiated use
- in a large number of centers (many low volume)
- in a broad range of presentation (definition 'high risk PCI' broad and unclear)
- absence of dedicated MCS ICU care in many centers
- Inheritent bias (different comparison between cases)



ORIGINAL RESEARCH ARTICLE

Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock

Matched-Pair IABP-SHOCK II Trial 30-Day Mortality Analysis

Schrage et al. Circulation 2019; 139: 1249-58.

Schrage et al. Circulation 2019; 139: 1249-58.

JAMA | Original Investigation

Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock

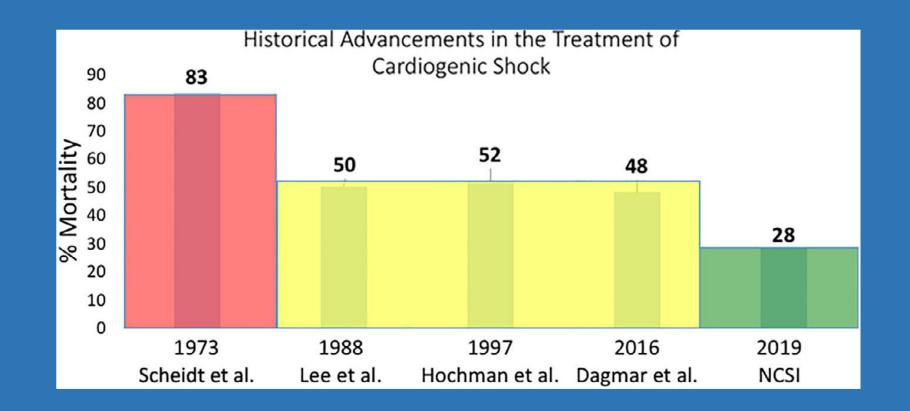
Sanket S. Dhruva, MD, MHS; Joseph S. Ross, MD, MHS; Bobak J. Mortazavi, PhD; Nathan C. Hurley; Harlan M. Krumholz, MD, SM; Jeptha P. Curtis, MD; Alyssa Berkowitz, MPH; Frederick A. Masoudi, MD, MSPH; John C. Messenger, MD; Craig S. Parzynski, MS; Che Ngufor, PhD; Saket Girotra, MD, SM; Amit P. Amin, MD, MSc; Nilay D. Shah, PhD; Nihar R. Desai, MD, MPH Figure 2. In-Hospital Outcomes Among Propensity-Matched Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock Undergoing Percutaneous Coronary Intervention With Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump

	Intravascular Microaxial Left Ventricular Assist Device		Intra-aortic Balloon Pump Absolute Ri		Absolute Risk	Favors Intravascular Microaxial Left	Favors	
	No. of Patients	Patients, %	No. of Patients	Patients, %	Difference (95% CI), %	Ventricular Assist Device	Intra-aortic Balloon Pump	P Value
Overall (n = 1680 matched pairs)								
Mortality	756	45.0	573	34.1	10.9 (7.6-14.2)			<.001
Major bleeding	526	31.3	268	16.0	15.4 (12.5-18.2)			<.001
Device placement before initiation of	of percutaneous	coronary interven	tion (n=573 n	natched pairs)				
Mortality	261	45.5	211	36.8	8.7 (3.1-14.4)		_	.003
Major bleeding	157	27.4	95	16.6	10.8 (6.1-15.6)			<.001
Device placement after initiation of	percutaneous c	oronary interventi	on (n=662 ma	tched pairs)				
Mortality	291	44.0	213	32.2	11.8 (6.6-17.0)			<.001
Major bleeding	228	34.4	104	15.7	18.7 (14.2-23.3)			- <.001
						10 10 0	0 5 10 15 20 k Difference (95% CI), %	25

Dhruva et al. JAMA 2020; 323 (8): 734-45.

Lesson 6 & 7 (matched controls Impella vs IABP-SHOCK and ACC National Cardiovascular Data Registry)

Disappointing results in matched control analysis Impella vs IABP


Data are observational (inheritent bias), RCTs needed to solve the issue

Attention to patient management and complications (bleeding,...) is needed

ORIGINAL STUDIES

Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative

Basir et al. CCI 2019; 93: 1173-83.

Basir et al. CCI 2019; 93: 1173-83.

National Cardiogenic Shock Initiative

1) early identification and catheterization laboratory activation in AMICS

2) early delivery of MCS (prior to PCI, prior to escalating inotropes, and as quickly from shock onset as possible, ideally within 90')

3) Routine use of invasive hemodynamics

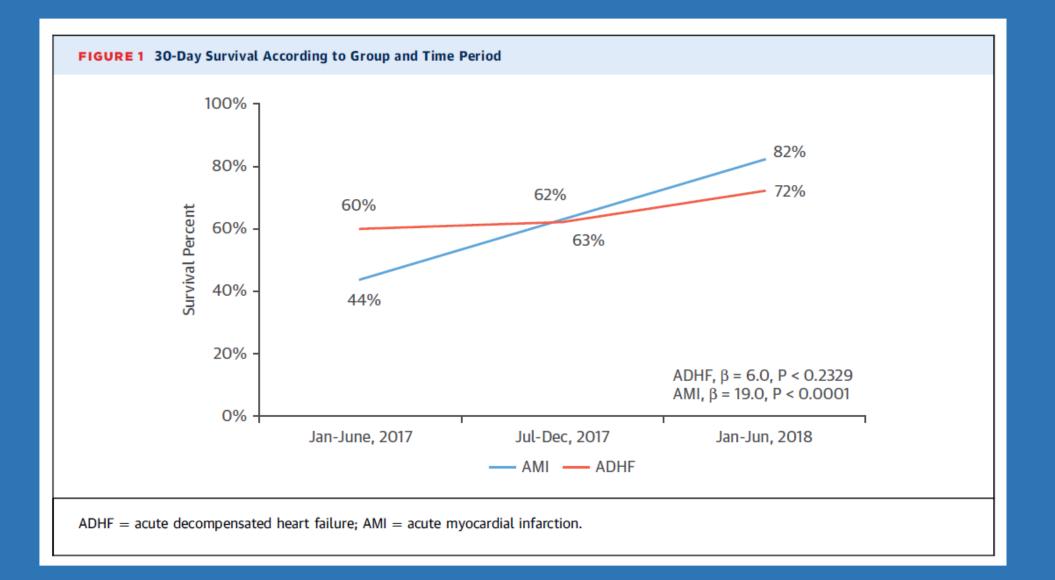
4) limiting device-related complications

Basir et al. CCI 2019; 93: 1173-83.

CENTRAL ILLUSTRATION: Frequency of Mortality Among PAC Use Overall and by SCAI Stage

PAC Utilization	Study Definition	PAC Utilization Among Study Cohort
None	 Presence of NONE of the following invasive hemodynamics: Pulmonary Artery Systolic Pressure Pulmonary Artery Diastolic Pressure Pulmonary Capillary Wedge Pressure Pulmonary Artery Saturation Right Atrial Pressure 	42%
Incomplete Assessment	 Presence of 1-4 of the following invasive hemodynamics: Pulmonary Artery Systolic Pressure Pulmonary Artery Diastolic Pressure Pulmonary Capillary Wedge Pressure Pulmonary Artery Saturation 	40% Association with Mortality Among Advanced Stage Patients
Complete Assessment	 Presence of ALL of the following invasive hemodynamics: Pulmonary Artery Systolic Pressure Pulmonary Artery Diastolic Pressure Pulmonary Capillary Wedge Pressure Pulmonary Artery Saturation 	Overall (N = 1,279) BO = 1,279 BO = 1,

Garan, A.R. et al. J Am Coll Cardiol HF. 2020;8(11):903-13.

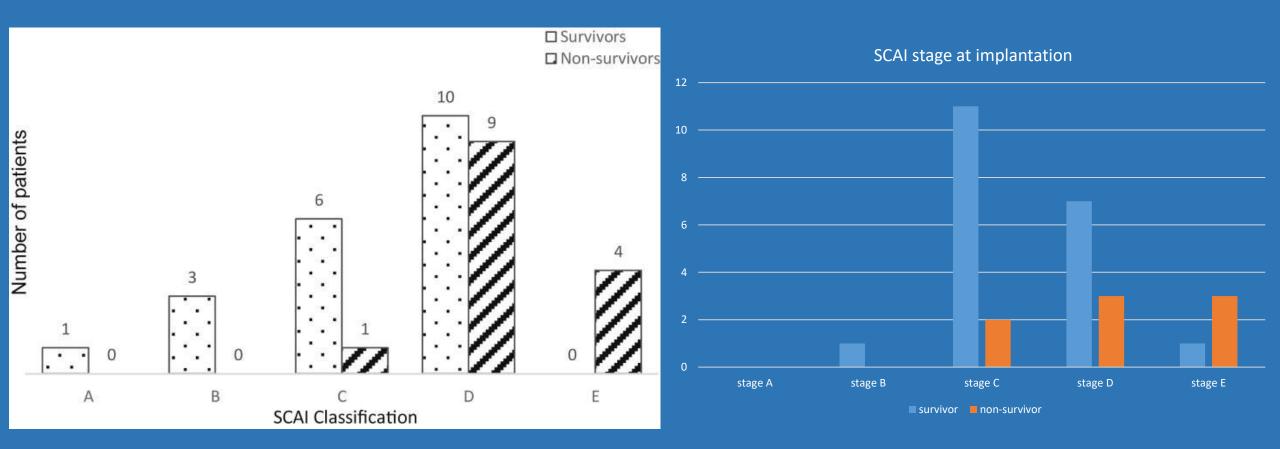

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Standardized Team-Based Care for Cardiogenic Shock

Behnam N. Tehrani, MD,^a Alexander G. Truesdell, MD,^{a,b} Matthew W. Sherwood, MD,^a Shashank Desai, MD,^a Henry A. Tran, MD,^a Kelly C. Epps, MD,^a Ramesh Singh, MD,^a Mitchell Psotka, MD, PhD,^a Palak Shah, MD,^a Lauren B. Cooper, MD,^a Carolyn Rosner, NP,^a Anika Raja, BS,^a Scott D. Barnett, PhD,^a Patricia Saulino, RN, MPA,^a Christopher R. deFilippi, MD,^a Paul A. Gurbel, MD,^a Charles E. Murphy, MD,^a Christopher M. O'Connor, MD^a

Tehrani et al. J Am Coll Cardiol 2019; 73 (13): 1659-69

VOL. 73, NO. 13, 2019


Tehrani et al. J Am Coll Cardiol 2019; 73 (13): 1659-69

CENTRAL ILLUSTRATION Definitions of SCAI Shock Stages A Through E, With Associated Cardiac Intensive Care Unit and Hospital Mortality in Each SCAI Shock Stage

Cardiogenic Shock Stage	Study Definition	Observed Mortality in Overall Co
Stage A (" <u>A</u> t risk")	Neither hypotension/tachycardia nor hypoperfusion	
Stage B (" <u>B</u> eginning")	Hypotension/tachycardia WITHOUT hypoperfusion	
Stage C (" <u>C</u> lassic")	Hypoperfusion WITHOUT deterioration	
Stage D (" <u>D</u> eteriorating)"	Hypoperfusion WITH deterioration NOT refractory shock	0°1° 20°1° 20°1° 20°1° 20°1° 60°1° 10°1°
Stage E (" <u>E</u> xtremis")	Hypoperfusion WITH deterioration AND refractory shock	 Cardiac Intensive Care Unit Mort ■ Hospital Mortality

Cardiac intensive care unit and hospital mortality increased as a function of higher Society for Cardiovascular Angiography and Intervention shock stage.

Jentzer. J Am Coll Cardiol 2019; 74: 2117-28.

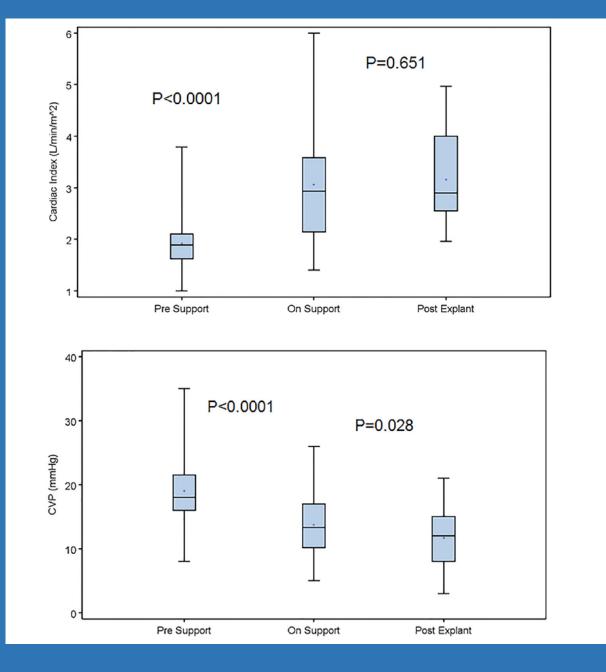
Trpkov CJC Open 2020; 370-8

Balthazar et al. Leuven CICU Impella experience. Submitted.

Lessons 8 & 9

Improved survival using a dedicated protocol

SCAI class E associated with bad outcome


The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

Outcomes of patients with right ventricular failure (requiring short-term hemodynamic support with the Impella RP device

Mark Anderson, MD,^a D. Lynn Morris, MD,^b Daniel Tang, MD,^c George Batsides, MD,^d Ajay Kirtane, MD,^e Ivan Hanson, MD,^f Perwais Meraj, MD,^g Navin Kumar Kapur, MD,^h and William O'Neill, MDⁱ CrossMark

Anderson et al. J Heart Lung Transplantation 2018; 37: 1448-58.

Anderson et al. J Heart Lung Transplantation 2018; 37: 1448-58.

Lesson 10

Impella RP promising, but limited evidence so far

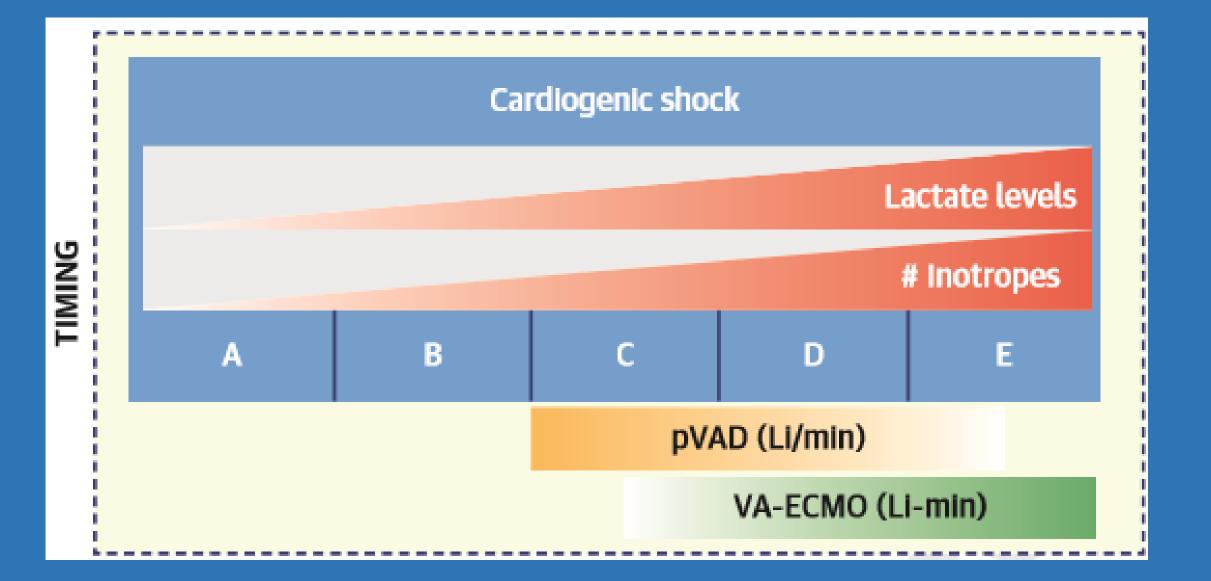
Trial	Methodology	N	Results	Trial	Methology	N	Results
Basir et al.	Retrospective Single arm	171	72% survival	Schrage et al.	Retrospective Patient matching	237	NS survival More compl.
Tehrani et al.	Retrospective Single arm	204	Increased survival: 77%	Amin et al.	Retrospective Patient matching	1792	NS survival Higher costs More compl
Helgestad et al.	Retrospective	80	Increased				More compl.
	Patient matching		survival: 60%	Dhruva et al.	Retrospective Patient matching	1680	Lower survival More compl.
CIZ UZ Leuven	Retrospective Single arm	29	72.4% survival				

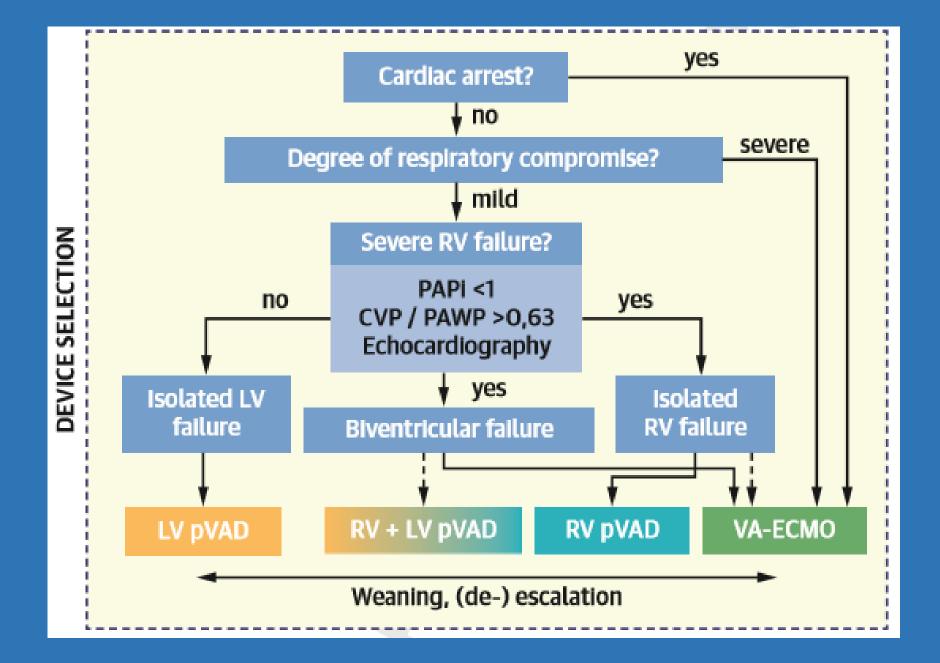
- Rapid action and identification of patients
- Protocol/multidisciplinary management
- Only experienced centres

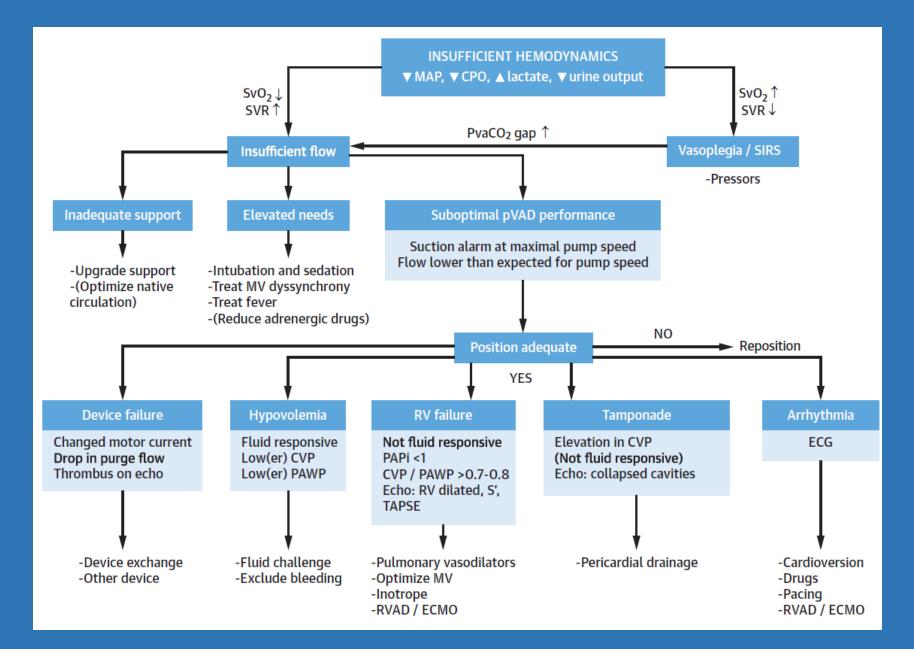
- Selection based on ICD- or reimbursement codes
- Also patients from low volume centres
- Matching of patients

Courtesy T. Balthazar

Managing Patients With Short-Term Mechanical Circulatory Support




Tim Balthazar, MD,^a Christophe Vandenbriele, MD, PHD,^{a,b} Frederik H. Verbrugge, MD, PHD,^{c,d} Corstiaan Den Uil, MD, PHD,^{e,f} Annemarie Engström, MD, PHD,^{e,f} Stefan Janssens, MD, PHD,^a Steffen Rex, MD, PHD,^g Bart Meyns, MD, PHD,^h Nicolas Van Mieghem, MD, PHD,^f Susanna Price, MD, PHD,^b Tom Adriaenssens, MD, PHD^a


ABSTRACT

The use of mechanical circulatory support for patients presenting with cardiogenic shock is rapidly increasing. Currently, there is only limited and conflicting evidence available regarding the role of the Impella (a microaxial, continuous-flow, short-term, left or right ventricular assist device) in cardiogenic shock; further randomized trials are needed. Patient selection, timing of implantation, and post-implantation management in the cardiac intensive care unit are crucial elements for success. Particular challenges at the bedside include the practical management of anticoagulation, evaluation of correct device position, and the approach to use in a patient with signs of insufficient hemodynamic support. Profound knowledge of these issues is required to enable the maximal potential of the device. This review provides a comprehensive overview of the short-term assist device and describes a practical approach to optimize care for patients supported with the device. (J Am Coll Cardiol 2021;77:1243-56) © 2021 the American College of Cardiology Foundation. Published by Elsevier. All rights reserved.

Thank you for your attention